Microplastics in Our Water

California is leading the way to deal with this, as this story from the National Law Review reports.

An excerpt.

“The California State Water Resources Control Board (“State Board”) is poised to become “the first regulatory agency in the world to specifically define ‘Microplastics in Drinking Water.’”[1] In September 2018, the California legislature adopted Health and Safety Code section 116376 via Senate Bill No. 1422, adding microplastics regulations to California’s Safe Drinking Water Act (“SDWA”).[2] This provision requires the State Board to adopt a definition for Microplastics in Drinking Water by July 1, 2020. Additionally, before July 1, 2021, the State Board must: (1) adopt a standard methodology for testing drinking water for microplastics; (2) adopt a requirement for four years of testing and reporting of microplastics in drinking water, including public disclosure of the results; (3) consider issuing a notification level or other guidance to help consumers interpret the testing results; and (4) accredit laboratories in California to analyze for microplastics. The State Board can implement these requirements through adoption of a Policy Handbook, rather than through the formal rulemaking process.

“Under the requirements of Health and Safety Code section 116376, water suppliers in California will be the first in the nation to test for microplastics in drinking water.

“Basis for Regulation: The Prevalence of Microplastics in the Environment

“The prevalence of microplastics in the environment was the impetus behind the adoption of section 116376, and the California legislature made a number of relevant findings in adopting the code section, including the following:

  • Microplastics in Surface Waters. Plastics are estimated to compose 60-80 percent of all marine debris and 90 percent of all floating debris.[3] According to a 2017 study by the International Union for Conservation of Nature, 9.5 million tons of plastic waste flow into the ocean each year.[4] All of this plastic eventually becomes microplastic as larger pieces break down into smaller and smaller particles. Microplastics account for roughly 94 percent of the estimated 1.8 trillion pieces of plastic found in North Pacific Central Gyre – the ultimate destination for much debris originating from the California coast.[5] Moreover, based on information from the United States Environmental Protection Agency, microplastics are also commonly found in freshwater systems.[6]
  • Microplastics in Fish. A recent study by the University of California, Davis, and Hasunddin University of Indonesia found one‑quarter of the fish sampled from fish markets in Makassar, Indonesia, Half Moon Bay, California, and Princeton, New Jersey, contained plastic.[7]
  • Microplastics in Tap Water. Researchers at the State University of New York and the University of Minnesota tested drinking water samples on five continents; 83 percent of worldwide samples contained microplastics, while 94 percent of the samples collected in the United States contained microplastics.[8]

“Research about the presence and impacts of microplastics in drinking water is in its infancy, as probable microplastics were only discovered in drinking water in 2017.[9] Currently, there is no standard methodology for testing for microplastics in drinking water, no accredited laboratories in which the state can conduct analyses of the testing, and no health standards.[10] Moreover, there are yet to be any studies directly assessing the potential human health impacts of microplastics in drinking water.[11]

“Definition of “Microplastics in Drinking Water”

“As a first step in implementing section 116376, the State Board issued a proposed definition of Microplastics in Drinking Water, with the public comment period ending on April 24, 2020.[12] Under this proposal, the definition of Microplastics in Drinking Water is as follows:

“Solid polymeric materials to which chemical additives or other substances may have been added, which are particles which have at least two dimensions that are greater than 1 and less than 5,000 micrometers (µm). Polymers that are derived in nature that have not been chemically modified (other than by hydrolysis) are excluded.[13]

“Acknowledging that the proposed definition could change in response to new information, the State Board’s definition is based on the three criteria of substancestate and dimension.[14]

  • The proposal broadly defines “polymeric material” to mean either (1) a particle of any composition with a continuous polymer surface coating of any thickness, or (2) a particle of any composition with a synthetic polymer content of greater than or equal to 1 percent by mass.[15] The State Board intentionally used the phrase “are derived in nature,” as opposed to “occur in nature,” to ensure the definition was broad enough to include anthropogenic polymers that occur in nature as a result of environmental contamination.[16] Thus, the broad definition of polymeric material includes nylon, polyester (including cotton‑polyester or wool‑polyester textile blends), synthetic rubber, rayon, and cellophane.[17] It also includes polymers containing high quantities of non‑polymeric additives (g., polyvinyl chloride).[18] Polymers, including cellulose, natural rubber, DNA, proteins, wool, and silk, that are exclusively derived from natural origins and materials, are excluded from this proposed definition. But naturally occurring polymers that have been chemically modified such as dyed wool or dyed cotton are covered by the definition if they are composed of >1 percent synthetic polymer by mass.[19]
  • Intending to be highly inclusive of particle diversities, the proposal defines “solids” as a “substance or mixture which does meet the definitions of liquid or gas,” rather than including temperature thresholds as a defining criteria.[20] As such, this definition also includes “semi-solid” polymers (g., wax‑like polymers and soft polymer gels).[21]
  • The State Board explains its rationale for requiring “at least two dimensions that are greater than 1 and less than 5,000 micrometers” as follows: (1) plastic particles less than 1 µm are not readily identifiable and require “fundamentally different techniques and instrumentation,” whereas plastic particles greater than 5,000 µm (e., 0.5 centimeters) are generally considered “trash”;[22] and (2) by requiring two dimensions to meet the criteria, larger fibers and films – that are expected to behave “fundamentally different than smaller microplastic particles” and require different techniques for characterization – are excluded.[23] Acknowledging there is insufficient evidence to determine the risk to humans from ingestion of microplastics in drinking water, the State Board references a 2019 World Health Organization report which suggests that smaller microplastic particles are likely more toxic to humans than larger particles and should be prioritized for monitoring in drinking water.[24]”

Retrieved May 8, 2020 from https://www.natlawreview.com/article/regulating-microplastics-drinking-water-california-retains-its-vanguard-status

Be well Everyone!

About David H Lukenbill

I am a native of Sacramento, as are my wife and daughter. I am a consultant to nonprofit organizations, and have a Bachelor of Science degree in Organizational Behavior and a Master of Public Administration degree, both from the University of San Francisco. We live along the American River with two cats and all the wild critters we can feed. I am the founding president of the American River Parkway Preservation Society and currently serve as the CFO and Senior Policy Director. I also volunteer as the President of The Lampstand Foundation, a nonprofit organization I founded in 2003.
This entry was posted in Environmentalism. Bookmark the permalink.