Clear Lake Algae Blooms

The blooms ruin an absolutely beautiful lake and this article from the California Water Blog contains some good info about them.

An excerpt.

“Clear Lake is one of California’s oldest and most unique natural features. Nestled in Northern California’s coastal mountains, Clear Lake is the largest lake completely within California and is the oldest lake in North America with sediments dating back 480,000 years (Sims et al. 1988). Rich mineral deposits around the lake were historically mined for borax, sulphur, and mercury. Thus, Clear Lake continues to be polluted by mercury and methylmercury which bioaccumulates in the food chain (Suchanek et al. 2008). In spite of pollution, the lake boasts an impressive diversity of biological life. It is designated as an Important Bird Area by the Audubon Society, and has endemic species such as the Clear Lake hitch (Lavinia exilicauda chi, a planktivorous fish), the Clear Lake splittail (Pogonichthys ciscoides, now extinct), and Clear Lake gnat (Chaoborus astictopus)—the latter of which was targeted by heavy application of of the pesticide DDD to control large swarms (Lindquist et al. 1951). These pesticide applications earned Clear Lake a feature in Rachel Carson’s seminal novel Silent Spring for its negative impacts on Western Grebe populations.

“Water Quality Issues in Clear Lake

“Clear Lake continues to struggle with long-lasting impacts of nutrient pollution. High concentrations of nutrients such as nitrogen and phosphorus fuel large algal blooms and contribute to poor water quality in the lake. Phosphorus is particularly abundant in Clear Lake and its associated watershed. As a result, harmful phytoplankton known as cyanobacteria thrive here, some of which can produce toxins harmful to humans. Commonly known as blue-green algae, cyanobacteria are an ancient group of organisms that are actually unrelated to algae since they are considered bacteria and not plants. Perhaps the most important difference between cyanobacteria and algae is that some species of cyanobacteria have specialized cells called heterocysts that capture nitrogen gas from the atmosphere and transform it into usable forms through a process called nitrogen fixation–something that plants are not capable of. In fact, legumes like soybeans and clover actually have symbiotic relationships with other nitrogen-fixing bacteria in order to glean nitrogen for their own use. 

“Nitrogen fixation gives cyanobacteria a competitive advantage in waters rich in phosphorus and relatively deficient in nitrogen–the exact conditions present in Clear Lake. Cyanobacteria thrive in Clear Lake and often form harmful algal blooms, or HABs, which are both ecologically damaging and dangerous to human health. In an effort to promote public safety, the Big Valley Band of Pomo Indians and the Elem Indian Colony collaboratively established an extensive cyanobacterial monitoring program to inform the public about current cyanotoxin levels around the lake. Annually, Clear Lake suffers major economic losses stemming from HABs, and a 1994 study estimated Lake County loses $7-10 million in tourist revenue annually due to HABs (Goldstein & Tolsdorf 1994). This value likely underestimates current tourism losses over 20 years later, and maintaining the economic viability of Clear Lake is paramount since it is located in the poorest county in the state. 

“Restoring a Naturally Eutrophic Lake

“Even before human settlement, Clear Lake was historically a productive lake due to phosphorus-rich rocks and sediments in the area (Bradbury 1988; Richerson et al. 2008). Eutrophic, or nutrient-rich lakes, do not inherently have poor water quality, despite their negative connotations. Clear Lake existed as a healthy, productive ecosystem for many thousands of years before European colonization. Algae forms the base of lake foodwebs, and algal abundances in Clear Lake create conditions that support trophy largemouth bass populations at higher densities than most other lakes.

“Despite some ecological benefits of algae, there comes a point where too much becomes harmful. At high enough levels, massive algal blooms ultimately die and biodegrade. This dynamic ultimately depletes dissolved oxygen and robs waterbodies of vast swaths of habitat for fish and aquatic life. Such conditions contribute to fish kills, especially during increasingly prolonged bouts of hot temperatures (Till et al. 2019). In order to maintain suitable dissolved oxygen levels, nutrient levels must be managed to prevent large algal blooms. Therefore, efforts to restore Clear Lake have focused on identifying and managing phosphorus sources to curb their harmful effects. 

“Phosphorus from the Deep: Internal Loading

“Clear Lake has two main phosphorus sources: the surrounding watershed, and lake sediments, or muck, at the bottom of the lake. This muck consists of terrestrial particles that get washed into the lake and dead organisms that sink down and accumulate over time—just like dust settling on an old shelf. The resulting layer of sediment is densely packed with phosphorus and prone to releasing it to the lake during periods of low dissolved oxygen, or hypoxia, near the lake-bottom. When this occurs, lake sediments fertilize the lake and cause harmful algae blooms. This process is called internal loading, and it has been one of the main focuses of the UC Davis Tahoe Environmental Research Center’s (TERC) research in Clear Lake. With the help of the Lake County Water Resources Department and their long-term dataset on sediment-associated phosphorus, our team has been working to track how sediment phosphorus levels have changed over time.”

Retrieved November 24, 2020 from Getting to the Bottom of What Fuels Algal Blooms in Clear Lake | California WaterBlog

About David H Lukenbill

I am a native of Sacramento, as are my wife and daughter. I am a consultant to nonprofit organizations, and have a Bachelor of Science degree in Organizational Behavior and a Master of Public Administration degree, both from the University of San Francisco. We live along the American River with two cats and all the wild critters we can feed. I am the founding president of the American River Parkway Preservation Society and currently serve as the CFO and Senior Policy Director. I also volunteer as the President of The Lampstand Foundation, a nonprofit organization I founded in 2003.
This entry was posted in Uncategorized. Bookmark the permalink.